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ABSTRACT
�is paper evaluates three electronic textile (e-textile) stretch sen-
sors commonly constructed for bespoke applications: two varia-
tions of fabric knit with a stainless steel and polyester yarn, and
knit fabric coated with a conductive polymer. Two versions of the
knit stainless steel and polyester yarn sensor, one hand and one
machine knit, are evaluated. All of the materials used in the con-
struction of the sensors are accessible to designers and engineers,
and are commonly used in wearable technology projects, particu-
larly for arts performance. However, the properties of each sensor
have not before been formally analysed. We evaluate the sensors’
performance when being stretched and released.
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1 INTRODUCTION
Electronic textiles (e-textiles) are textiles that conduct electricity
and are used to form electrical circuitry. As fabric and thread are
already worn next to the body, e-textiles provide an ideal approach
for wearable computing that does not inhibit the wearer. While
there are signi�cant barriers to fabricating complex circuitry in
textiles, e-textile sensors are becoming more prevalent.

Stretch or strain sensors are a class of sensors with a wide range
of applications when a�ached to the body. �ey can be used to
detect large movements such as the bending of a joint [4], or smaller
movements such as the expansion and contraction of the ribcage
when breathing [7]. Both of these applications have used sensors
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
MOCO ’17, London, United Kingdom
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5209-3/17/06. . .$15.00
DOI: 10.1145/3077981.3078043

that measure the change in resistance when a knit conductive fabric
is stretched.

A knit stretch or strain sensor has many design parameters in-
cluding the yarn used to make the sensor, the knit structure of that
yarn, and which conductive materials are used. �is paper is look-
ing at three sensors that are commonly found within do-it-yourself
artistic and hobbyist electronics communities. �ese communities
seldom have the same level of access to new conductive materi-
als and fabrication processes as academic or industrial research
facilities, which is the focus of much of the literature. Artistic and
design communities also have additional requirements for sensor
design than medical or health researchers: the sensor design needs
to accommodate the aesthetic of the larger garment in which the
sensor is embedded and not dictate it.

Here we will examine two sensors that use relatively inexpen-
sive materials and are simple to make for anyone familiar with
kni�ing. �ey are compared to a third sensor design using a pro-
prietary commercial knit fabric that is gaining popularity, though
has more limited access. �e sensors made with these materials
do not perform ideally, but exhibit a number of de�ciencies. �is
work �ts into a larger context that is looking towards developing
signal processing approaches that can overcome the �aws of these
sensors. �is paper takes the �rst step of characterizing some of
those de�ciencies.

1.1 Knit Stretch Sensors
Kni�ing is the looping together of a yarn to form a fabric. �e
loop structure provides multiple contact points whose resistance
decreases as a strain is applied and pressure increased between the
contacts [2]. �e construction of the knit material is determined by
the number of loops and how tight or loose they are in relation to
each other. �e textile could be produced using a �at-bed kni�ing
machine with a single or multiple beds of needles to create a �at
textile or a circular machine to produce a tubular textile. �e textile
can also be produced using hand kni�ing and no machinery. �e
structure of the loops in relation to each other is a function of the
machine or hand tools used and accompanying design parameters.
For example, the tightness of the loops in a fabric has been shown to
e�ect the sensor performance. Less compact fabric has be�er accu-
racy when relaxed [3]. �e placement of the conductive yarn within
the knit structure will also in�uence performance. Conductive yarn
knit lengthwise (in the wale) produces more repeatable and stable
results than when oriented along the width (in the course) [7].

Knit sensors that change their resistance when stretched are
exhibiting the piezoresistive e�ect. �e properties of this e�ect
come from a number of factors, but are all rooted in the path of
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the electricity being altered when the fabric is stretched. �ere
are common traits amongst knit sensors, but individual design and
construction decisions in�uence the results preventing a single best
sensor design. �ere are common de�ciencies found in the sensors,
though the exact cause may vary according to construction details.
All knit stretch sensors exhibit some amount of hysteresis and are
not completely linear when being stretched or released [2]. �ey
also may dri� in their resistance values over time [3].

A major sensor performance factor is the conductive material
being used. Yarns can be conductive by coating or wrapping a non-
conductive core like nylon with a metal, usually silver or stainless
steel. Alternatively, metal �bers can be mixed with non-conductive
�bers and then the yarn is spun, blending the materials. Blended
yarns have been found to produce less stable sensors [3], but they
tend to feel more like non-conductive yarns than metal coated
or wrapped yarns. Non-metal conducting materials like certain
forms of carbon may also be mixed with non-conductive yarns, and
changing the conductive yarn composition while keeping all other
factors the same can change the linearity of the knit sensor [8].

Knit stretch sensors combine conductive and non-conductive
elements. One method is to hold two yarns together while kni�ing,
one conductive and the other not. It has been found that using
elastomeric yarns as the non-conductive yarn can increase stability
of the sensor [3], though this hasn’t been consistently observed in
other studies [7].

2 METHODOLOGY
�e three knit sensors under test were built with identical dimen-
sions, 20 mm x 100 mm. �e sensors were stretched with one end
held in place and other end extended by a linear actuator. De-
pending on the elasticity of the textile the sensor was stretched or
relaxed either 40 mm or 55 mm at a constant velocity of 30 mm/sec.
Five measurements of each sensor being stretched and then also
relaxed back to its resting state were recorded.

Each sensor formed part of a voltage divider circuit, with a pull
down resistor whose value was chosen to provide the maximum
range of values from the sensor. A BeagleBone Black single-board
computer with a Bela cape was used to control the movement of the
linear actuator and record the sensor values[1]. �e Bela measured
the sensors with a sample rate of 22.05 kHz using a 16 bit analog-to-
digital converter. �e sample rate was then �ltered and decimated
to 2.756 kHz for analysis.

2.1 Sensor Design and Construction
�e sensors were constructed to be same size to simulate constraints
of placement on the body. Two of the sensors used a commercially
produced conductive yarn and varied only the tools and techniques
used to construct the sensors. �e third was a knit fabric coated
with a proprietary conductive fabric treatment. Each of the three
sensors can be seen in Figure 1. Online tutorials and guides are
available for working with these sensor materials [5, 6].

2.1.1 Machine Knit Conductive Yarn. One sensor was machine
knit used a Dubied kni�ing machine. �e fabric construction was a
double bedded knit (we� knit) which allows for a greater stretchabil-
ity in the structure, especially in the wale (lengthwise) direction up

Figure 1: Photographs of each of the knit sensors. Not
shown to relative scale. From le� to right: Eeonyx fabric,
machine knit, hand knit.

to 300% stretch. �e sensor was oriented so that the wale direction
was stretched.

�e yarn consisted of a conductive, stainless steel (20%) and
polyester mix (80%), Nm 10/3 (1 gram per 10m, 3 thread counts).
It was knit at a 7gg gauge, as it is a relatively thick yarn. Due to
its thickness, there are limits on how thin or light a fabric can be
kni�ed with it; this yarn could be used for outerwear garments
such as cardigans, jumpers or accessories (e.g. scarves).

2.1.2 Hand Knit Conductive Yarn. �e second sensor was hand
knit at a gauge to match that of the machine knit, using the same
yarn. �e sensor was knit in a 1 x 1 rib structure, the same structure
as the machine knit sensor. It was stretched in the same orientation
as the machine knit sensor.

2.1.3 Conductive Polymer Coating. �e third sensor is a com-
mercial product developed by Eeonyx called EeonTex. It is a stretch-
able 72% nylon and 28% spandex knit fabric that has no conductive
properties inherent in the yarn. It is treated with a conductive poly-
mer coating a�er the fabric is knit. �e sensor fabric was mounted
onto non-conductive knit jersey fabric to prevent the fabric from
curling on itself during stretching.

�e fabric is a much �ner gauge of approximately 30gg than
the other two sensors. �e fabric is a relatively light 163g/m, the
same weight as a medium weight t-shirt fabric. �e fabric is a
single bedded jersey knit, we� knit, with less stretchability than a
double bedded rib-like knit. �ere is li�le di�erence between the
stretchability in wale or course direction.

3 RESULTS
Each sensor was measured as it was stretched and relaxed �ve times.
Figure 2 shows the measurement signal for a single trial for each
sensor. �e response is similar to those found in related studies
[2, 3, 8]. �e sensor value slightly dips when it is initially stretched
from its resting state, but quickly transitions to an approximately
linear response before losing sensitivity. �is response is largely
seen in reverse when relaxing the sensor from being maximally
stretched back to its resting state, though with a longer linear
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Sensor No Strain (Ω) Stretched (Ω) Gauge Factor
Eeonyx 260k 142k 0.15
Machine 3.8k 260 3.02
Hand 7.5k 480 3.25

Table 1: Sensor resistance values when under no strain, max-
imally stretched and the gauge factor of the sensor.

section. �e Eeonyx response is notable in that is contains much
less noise than the other two sensors.

3.1 Gauge Factor
�e gauge factor as described in Equation 3.1 can be summarized as
the change in resistance divided by the change of length between
the relaxed and stretched states.

GF =
∆R
R
ϵ

ϵ =
∆L

L
where R is the initial resistance, ∆R is the change in resistance, L is
the initial length, and ∆L is the change of length.

Table 1 shows the resistance values and gauge factor for each of
the sensors. �e hand and machine knit sensors have much larger
gauge factors due to their ability to stretch much further than the
Eeonyx fabric. �e Eeonyx fabric is also signi�cantly more resistive
than the other two sensors. �e Hand knit sensor has roughly twice
the resistance of the machine knit sensor in both its stretched and
relaxed state.

3.2 Correlation Within Sensor
In order to test whether multiples responses from a given sensor
are related to each other, the Pearson correlation coe�cients were
calculated. �e mean and variance of the coe�cients between all
measurements by the same sensor in same direction can be seen in
Figure 3.

�e Eeonyx fabric shows the strongest correlation between mea-
surements in both directions of movement. �e hand and machine
knit sensors are less correlated and are signi�cantly less correlated
in one direction than the other. �e machine knit shows the weak-
est correlation for all the sensors and directions when it is being
stretched while the hand knit is relatively less correlated when it
relaxes.

3.3 Correlation Between Sensors
A second set of correlation coe�cients were calculated to com-
pare whether the responses could have be drawn from the same
probability distributions. �e mean and variance of the pairwise
comparisons of each sensor can be seen in Figure 4.

�ere is a high correlation between the hand and machine knit
sensors both when they are being stretched and relaxed. �ere is
li�le correlation between the stretching of the Eeonyx fabric with
either of the other sensors. However, all three sensors show strong
correlations to each other when being relaxed.

4 DISCUSSION
Of the three sensors evaluated, the Eeonyx fabric performs the most
consistently across multiple measurements. �e two sensors knit
at the larger gauge with blended conductive yarn show more noise
and less consistency between measurements.

A primary di�erence between the two knit structures used in
the sensors is the way conductivity is applied. While the hand
knit sensor and the Dubied machine knit sensor are made of yarn
that consists of 20% stainless steel, the knit jersey from Eeonyx is
initially made of yarns that have no conductivity properties. �e
la�er fabric is given a �nishing - a coating - that then gives the
fabric the necessary property. �is way of manipulating the textile
surface, and the stage in which this is done, could be one reason
for the change in consistency in the sensors. Moreover, synthetic
�bres in general (nylon and elastane for the Eeonyx fabric) provide
a good base for any surface manipulation, such as dying - or, in this
case, coating. In comparison to natural �bres, synthetics capture
colour be�er and more lasting.

However, the gauge may be the largest in�uence on the sensors’
behaviour. �e gauge is dependant from the thickness of the yarn
itself. We used a Nm 10/3 polyester and stainless steel yarn for the
hand kni�ed and machine kni�ed sensor (the Nm system counts
metres per gram, in this case 10 grams on 1 metre) which is suitable
for a 7 gauge knit fabric (or chunkier). In a �ner fabric (we speculate
the Eeonyx fabric to be an approximately 20gg knit), there are
proportionally more contact points which will e�ect the sensor
performance [3] and in general a denser arrangement of the yarn.
�is could potentially cause more or less consistency and noise
overall.

It is possible that any correlation between sensors could be an
artifact of using a common test rig, but since there was not a strong
correlation shown between two of the sensors and the Eeeonyx
fabric when being stretched, that is unlikely.

�e high correlation between the hand and machine sensors
indicate that there li�le di�erence between the probability distri-
butions of the two sensors. �is suggests that the tools used to
construct the sensor may have less in�uence over its performance
than knit structure and material.

5 CONCLUSIONS
�ree stretch sensors commonly used in bespoke textile projects
for arts performance or fashion prototypes were evaluated by mea-
suring their change in resistance while being stretched and relaxed.
Eeonyx, though the most di�cult to acquire of the materials tested
due to it being available only through specialist suppliers, has the
most consistent measurements. �ere could be due to a number of
factors, including the gauge or tightness of the fabric, which was
much looser for the two non-Eeonyx sensors. �e literature sup-
ports adding additional non-conductive, elastomeric yarns, which
these results also support exploring.

�ese results suggest that if a blended conductive yarn is avail-
able, then it can be used to create a stretch sensor, but using a
kni�ing machine to construct the sensor does not necessarily re-
sult in a more consistent sensor. If a large percentage of stretch is
required for the application, then a hand or machine knit sensor
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Figure 2: One trial for each of the sensors.

Figure 3: Mean correlation coe�cients with error bars show-
ing the variance for each sensor.

Figure 4: Correlation coe�cients between sensors.

may be preferred, but otherwise a sensor built using Eeonyx fabric
will produce less noisy values.

Further work would include stretching and relaxing at di�erent
speeds and also di�erent rates of change (accelerating and decel-
erating), along with observing the response when transitioning
from stationary to moving and to stationary again. Further char-
acterizations of the sensors such as ��ing to a linear model and
measuring hysteresis and dri� over time will also be needed in
order to compensate for their de�ciencies.
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