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Abstract
People move in characteristic ways during conversation and
these movements correlate with their level of particpation.
For example, speakers normally gesture significantly more
than listeners. These visible, overt movements are normally
analysed using full body video or motion capture. Here we
explore the potential of a ’minimal’ approach to sensing these
participatory movements in part of the natural environment
of everyday interactions; chair seat covers. Using custom
built fabric sensors we test whether we can detect people’s
involvement in a conversation using only pressure changes
on the seats they are sitting in. We show that even from
this impoverished data we can distinguish between talking,
backchanneling and laughter; each state is associated with
distinctive patterns of pressure change across the surface
of the chair. We speculate on the possible applications of
this new, unintrusive form of social sensing for architecture,
performance and augmented human interaction.

Keywords: human interaction; dialogue; non-verbal
communication; social sensing; smart textiles; posture
analysis; fabric sensors;

Introduction
People make a variety of distinctive body movements during
conversation. The most commonly studied of these are the
gestures that speakers produce while talking. These include
gestures that contribute to the content of what is said, such
as iconics, metaphorics and pantomimes (McNeill, 1992; de
Ruiter, 2000), as well as gestures that help to orchestrate the
interaction such as beat gestures and gestures that can hold or
hand over the turn to someone else (Bavelas, Chovil, Lawrie,
& Wade, 1992; Healey & Battersby, 2009). Listener’s body
movements are also organised in characteristic ways. Most
obviously through the production of concurrent feedback or
‘backchannels’ (Yngve, 1970). Although these are often pro-
duced as non-interruptive verbal acknowledgements such as
a brief “aha” or “mmhm” people also frequently backchan-
nel by nodding in response to an ongoing turn. Listeners are
also distinguished from speakers by their relative lack of hand
movement although they move their hands much more when
a speaker requests clarification or makes repairs to their turn
(Healey, Plant, Howes, & Lavelle, 2015).

The significance of this non-verbal choreography is illus-
trated by how much we can infer about an interaction from

the observation of body movements alone. We can often tell
just by looking at who is talking to whom, who -if anyone- is
listening, who is likely to speak next, whether the interaction
is hostile or friendly and so on (Kendon, 1990). These infer-
ences from non-verbal performances can be striking; people
appear to be able to make reliable estimates of the quality of
someone’s teaching over a whole semester from a single 5
second video of body movements alone (Ambady & Rosen-
thal, 1992).

Research on non-verbal communication has tended to fo-
cus on these relatively large scale overt body movements;
they are the easiest signals for participants to perceive and
respond to and the most tractable for analysis (although see
e.g. Ekman & Friesen 1969). Research typically takes advan-
tage of video and, more recently, motion capture equipment
to capture and analyse these movements (e.g. Healey & Bat-
tersby 2009; Vinciarelli et al. 2009. The rapid development of
new sensor technologies and their application to social signal
processing has opened an intriguing new space of possibili-
ties for detecting patterns of interaction (Vinciarelli, Pantic, &
Bourlard, 2009). For example, it is possible to detect people’s
levels of interest, stress and intoxication in conversation using
the speech signal alone i.e. without knowing anything about
the content of what is said (B. W. Schuller & Rigoll, 2009;
B. Schuller et al., 2013). In contrast to relatively intrusive
technologies such as video or automatic speech recognition,
this approach makes it possible to create anonymised ‘mini-
mal’ forms of social sensing by using textile technology (see
also e.g. Rekimoto 2001).

Here we explore the potential of this approach for one of
the most commonly used parts of the physical environment
for social interaction; chairs. Even the shape and position of
unoccupied, uninstrumented chairs can indicate a great deal
about interaction; chairs around a small table suggest some-
thing very different from chairs in rows (see also Anderson
1996). Moreover, chair covers are often made out of stretch
and soft fabric that makes the textile surface itself a poten-
tially promising sensing material. Using metallic yarn gives
a fabric conductive properties so that it can be turned into a
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pressure sensitive surface. Different possibilities of using tex-
tile surfaces as sensing materials or interfaces for electronic
devices have been explored in recent years, for example by
turning a jacket into an interface to a mobile phone (Poupyrev
et al., 2016) or by measuring biomechanical data for health-
care applications (e.g. Pacelli et al. 2006). Here we apply
a similar fabrication technique to chair covers to address the
basic question of whether it is possible to detect patterns of
conversational interaction from movements on the chair sur-
face alone.

Sensing Chairs
Informal observation suggests that people frequently change
the position of the torso, lower body, and feet during seated
conversations. These movements necessarily cause pressure
changes on the surface of the chair and are therefore poten-
tially detectable by measuring changes in resistance. Previ-
ous work has investigated the use of chairs to classify pos-
tures through pressure sensors, creating pressure maps of
both, static and dynamic postures - posture identification ver-
sus continuous tracking (Tan, Slivovsky, & Pentland, 2001;
Slivovsky & Tan, 2000). A commercially available pressure
measurement system, BPMS (Body Pressure Measurement
System) by Tekscan 1 has been used in some of these re-
search projects (e.g. D’Mello et al. 2007 and Arnrich et al.
2010), which consists of a plastic mat with 64 integrated pres-
sure sensors that allow for the creation of detailed pressure
maps. The main applications for these sensing systems have
been in the analysis of posture to improve seating comfort
(e.g. Milivojevich et al. 2000), designs for objects involved
in rehabilitation (e.g., wheelchairs) and Human-Computer-
Interaction. For example, presenting chairs as novel haptic
interfaces for computer games (Tan, Slivovsky, & Pentland,
2001), or as a system to measure people’s cognitive states
in various situations Arnrich et al. (2010), including mea-
suring a car driver’s fatigue (Furugori, Yoshizawa, Iname, &
Miura, 2003) or identifying drivers (Riener & Ferscha, 2008),
as well as measuring boredom in students (D’Mello, Chip-
man, & Graesser, 2007). However, this approach has not pre-
viously been applied to sensing aspects of social interaction.
With this study, we explore what information about social be-
haviour can be retrieved from pressure sensor data on a chair.

Methods
Drawing on informal observations of people’s leg and torso
movements in meetings we decided on a configuration of
eight sensors that were integrated in the chair cover and dis-
tributed in a symmetric arrangement; four in the seat of the
chair and four on the back (see Figure 1), dividing the chair
into four key areas to be sensed in order to determine pos-
tures: shoulders (at the top of the back rest), waist (lower
back), buttocks and thighs. These observations also laid the
basis upon which initial hypotheses about different states in a
conversation were built.

1see https://www.tekscan.com/

Figure 1: Reverse side of the chair cover showing sensors.

Sensor Development
The textile sensors were made from conductive fabric and re-
sistive foam, hand sewn into soft sensor patches that were
manually attached to the backside of a chair cover (which was
made of jersey knit fabric). The conductive fabric, SaniSil-
ver, was purchased from LessEMF and woven with a silver
yarn showing on one side of the fabric and a cotton yarn vis-
ible on the other. The sensors are constructed such that two
swatches of conductive fabric are facing the resistive foam on
both sides. When pressure is applied to the conductive fabric
on either side of the foam, the foam compresses and reduces
the resistance between the two fabric swatches. This change
in resistance is measured by the microcontroller. The sen-
sors have the advantage of behaving like an ordinary fabric
that could also be used in other wearable applications, such
as garments (since, through the use of cotton fibre, the fabric
retained a soft touch and remained comfortable to wear).

Data Collection
A microcontroller (a Teensy 3.2) collected the pressure data
from the sensors and stored it on micro SD cards. The sam-
pling frequency of the sensors was 4 readings per second. Us-
ing these piezoresistive sensors, the unit of measure is Ohm
(Ω). Since the aim was to investigate postural behaviour in a
situation of social interaction, three chair covers were manu-
factured, each housing one micro controller that were placed
underneath the chair. Wires were hooked into the conductive
fabric and connected the sensors with the Teensy (to ground
and to an assigned analog pin providing 3.3 volts to run the
programme, which read analog output values from the sen-
sors).

Participants
Participants were recruited in groups of three friends or col-
leagues to ensure they all had some initial level of familiarity
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with each other. We conducted 9 trials in total, collecting data
from 27 participants, of which were 11 female and 16 male
and between the age of 20 and 40.

Procedure
The experiment was carried out in the Human Interaction Lab
at Queen Mary University of London. Groups of three partic-
ipants were asked to resolve a moral dilemma: the balloon
task. This is a fictional scenario describing three people in a
hot air balloon that is about to crash, if not one of the passen-
gers jumps to their certain death. The task is then to come to
an agreement of who to throw off. The participants were told
that the aim of the experiment is to investigate collaborative
interaction. They were seated at a round table and asked to
discuss options and come to an agreement on how to resolve
this dilemma. We aimed to record 15 to 20 minutes of conver-
sation, so if not having come to an agreement after this time,
participants were given the option to stop the conversation
or carry on (vice versa, if they came to an agreement faster,
alternative scenarios were provided to encourage further dis-
cussion). Due to the materiality of the sensors, the presence
of the sensor patches was not noticed by the participants, so
that the experience wasn’t different to sitting on a common
chair.

Data Analysis
The interactions were captured on two cameras placed in dif-
ferent corners in the room. Lapel microphones were used
to facilitate speaker-specific analysis of the audio for tran-
scription. The data from the video recordings was annotated
using Elan (Brugman, Russel, & Nijmegen, 2004). Coding
focused on three key behaviours with: speaking, laughter and
backchannels. When determining speaking modes, periods
of overt speech were coded, regardless of postural and gestu-
ral changes, or nodding. But focusing on postural movement
overall, it was noticed that often, a postural or gestural change
was performed immediately prior to speaking. This makes
the start of an utterance ambiguous. For the purposes of this
study, the beginning of utterances was defined as the onset of
speaking. For laughter, responsive as well as speakers con-
current laughter was noted. Therefore, laughter is annotated
for both, speakers and listeners. Backchannels were coded
for all continuous verbal particles of response, as well as re-
pair initiations. An overview of the coding scheme for these
behavioural cues can be seen in Table 1.

Table 1: Coding scheme used in Elan.

Tiers per participant Social behaviour
speaking verbal utterance
laughter responsive and concurrent
backchannel responsive, repair initiation

Following this coding scheme, all elements that mark lis-
tening modes are created from the gaps of the annotations

for laughter, speaking and backchannels. This means that
within the listening mode, any gross and subtle body move-
ment, as well as nodding or any other conversational action
is included. With the aim of distinguishing speakers from lis-
teners, this level of detail in annotations is sufficient, although
the sensitivity of the sensors allows for richer and more fine-
grained distinctions.

Results
The data from all eight sensors were analysed in a General
Linear Model Multivariate Regression using SPSS v.24. Talk-
ing, Laughing and Backchanneling were included as binary
predictors coded as 1 or 0 for presence / absence of each be-
haviour. All two and three-way interactions of these three
factors were included in the model. Participants were also
included as a main effect to ensure individual variation was
accounted for.
Since the relative changes for each participants were calcu-
lated, changes of weight had no effect on the outcome of the
analysis.

Figure 2: Estimated means of all participants for TALK:
thighs: left(187.513), right(209.379); butt: left(137.721),
right(175.910); waist: left(231.599), right(345.421); shoul-
ders: left(137.810), right(195.288)

Multivariate Tests (Pillai’s Trace) show all three dialogue
factors reliably predict the outputs of the pressure sensors
(Talk: F(8,82933) = 9.68, p < 0.00; Backchannel F(8,82933) =
10.2, p < 0.00; Laugh: F(8,82933) = 6.95, p < 0.00;). The ef-
fects are very small with Partical Eta Squared of 0.001 and
observed power for Alpha = 0.05 of 1. The contribution of
individual variation is, by contrast, much larger: Participant:
F(8,82933) = 6.95, p < 0.00, Partial Eta Squared = 0.71).

Analysis of the contributions of each sensor show that dif-
ferent patterns of pressure changes across the chair are associ-
ated with the different dialogue states. The sensors most sen-
sitive to talking were in the seat of the chair and correspond
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Figure 3: Estimated means of all participants for
LAUGHTER: thighs: left(118.642), right(209.379);
butt: left(178.079), right(187.614); waist: left(229.081),
right(342.121); shoulders: left(143.385), right(179.532)

to increased pressure from the thighs and reduced pressure
from the buttocks. In contrast to this laughter corresponded
to reduced pressure in the thighs and increased pressure in
the buttocks with no significant changes detected in the seat
back. The pattern of pressure changes for the relatively brief
backchannels were distributed across both the seat and back
of the chair and corresponded to increased pressure across
thighs, buttocks and waist but a reduction across the shoul-
ders. The estimated means for changes at each sensor are il-
lustrated in Figures 2, 3 and 4 (numbers based on modified
population marginal mean).

Discussion
The results show that it is possible, in principle, to de-
tect significant aspects of social interaction from quite lim-
ited, indirect and noisy data. The small movements detected
by pressure sensors embedded in chair seats are small-scale
and almost completely invisible correlates of the gross body
movements that typically distinguish speakers from hearers
and laughter from silence. Interestingly, even the relatively
small nodding movements of the head associated with back-
channels appear to create a distinguishable pressure signature
on a chair.

This is the first attempt to detect significant conversational
states from simple ‘homemade’ pressure sensors and the sig-
nal to noise ratio is low. Individual variations in movement
in particular account for far more of the variance than differ-
ences in dialogue state. Further work to optimise the size and
position of the sensors would doubtless improve the quality
of the sensing. It is also likely that other approaches, such
as training person-specific classifiers and machine learning
mechanisms, would improve the accuracy and robustness of

Figure 4: Estimated means of all participants for
BACKCHANNELS: thighs: left(176.345), right(199.648);
butt: left(172.195), right(189.949); waist: left(246.298),
right(351.819); shoulders: left(114.193), right(189.709)

the approach although this would also undermine the advan-
tages of anonymity. The demonstration that even relatively
crude sensors can detect minimal changes in posture, sug-
gests that future work should explore the possibility of cap-
turing more complex social behaviour, especially relational
questions such as whether interactions are, for example: con-
vivial or combative; autocratic or egalitarian, or whether it is
possible to characterise regularities in multiparty interaction
(see e.g. (Abney, Paxton, Dale, & Kello, 2014)).

What could this form of sensing be used to do? The prin-
ciple opportunities for application are in any situations where
there is value in the ability to unintrusively gather information
about general patterns of social interaction including levels of
interest and engagement. One example is architecture where
the ability to sense a building’s energy performance and pat-
terns of air flow is highly valued but currently has no social
counterpart. We speculate that the ability to make simple,
systematic assessments of a building’s ‘social performance’
by instrumenting the chairs in a building could also have a
significant positive impact on domestic and workplace de-
sign. A second example is in the evaluation of audience re-
sponses (e.g. continuous audience response measure, CARM,
which is used by broadcast hosts to evaluate their programs).
The deployment of such a sensor network in an auditorium,
meeting room or a classroom could help to assess levels of
engagement of students and other audiences. In addition,
there are possibly applications to augmented human interac-
tion where, for example, live feedback about how much peo-
ple are dominating (or not) a conversation can have signifi-
cant effects on the conduct of the interaction (Donath, 2002).
If nothing else these results shed some light on Stephen Fry’s
(1984) advice that when delivering Shakespeare one should
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”always gather from the buttocks”.

Summary
This paper presents a new sensing system using textile pres-
sure sensors that are designed to be integrated in a chair cover
and that are able to reliably distinguish speakers from listen-
ers and detect laughter and backchannels. These fabric sen-
sors provide a non-intrusive way to measure conversational
engagement. Data about pressure changes on the seat and
back rest alone make it possible to differentiate various be-
havioural states in a seated conversation. The ability to ex-
tract such patterns of social interaction from sensing pressure
changes could replace other, more complex motion detection
systems and mitigate privacy concerns, since the data collec-
tion is anonymous involves no audio or video data and does
not capture any of the content of the conversation.
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