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ABSTRACT
Body posture is a good indicator of, amongst other things, peo-
ple’s state of arousal, focus of attention and level of interest in a
conversation. Posture is conventionally measured by observation
and hand coding of videos or, more recently, through automated
computer vision and motion capture techniques. Here we introduce
a novel alternative approach exploiting a new modality: posture
classi�cation using bespoke ’smart’ trousers with integrated tex-
tile pressure sensors. Changes in posture translate to changes in
pressure patterns across the surface of our clothing. We describe
the construction of the textile pressure sensor that can detect these
changes. Using simple machine learning techniques on data gath-
ered from 6 participants we demonstrate its ability to discriminate
between 19 di�erent basic posture types with high accuracy. This
technology has the potential to support anonymous, unintrusive
sensing of interest, attention and engagement in a wide variety of
settings.

CCS CONCEPTS
•Human-centered computing→ Ubiquitous and mobile comput-
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1 INTRODUCTION
Posture can reveal a lot about what is going on in an interaction. For
example, bored members of an audience tend to sit back, prop their
head on one hand and stretch their legs out in front of themwhereas
engaged audience members tend to sit upright, legs tucked under
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Figure 1: Sketches of di�erent listener postures observed
during seated conversations. From left to right: a) right over
left leg, ankle touching knee, right hand on thigh; b) sitting
straight, hands in crotch; c) legs spread, hands on thighs; d)
right leg crossed over left, hands on right thigh

the chair and keep their hands down [4]. The richness of the cues
available from posture and body orientation can be surprising. In
conversation we can tell, just by looking, who is talking to whom,
whether the interaction is, e.g. hostile or friendly and what the
general level of interest and engagement is [20, 33].

Many conversations happen when seated. Casual observation
of these situations reveals an especially rich variety of di�erent
postures (see Figure 1) enabled, in part, by the relaxation of the
need to use legs to support our body weight. People continually
adjust their posture and re-arrange their hands and legs when
seated. For example: hands resting on laps; elbows on thighs; a
forward leaning posture; hands that are tucked between thighs;
hands on knees and many other variations. Our basic question is,
what can these di�erent postural states tell us about conversational
engagement and potentially even about more complex, a�ective
states?

Although posture and body movements are typically analyzed
using video or, more recently, computer vision and motion capture
techniques (e.g. [15, 16]) there are some limitations to this approach.
First, and most obviously, the presence of a camera is always to
some degree intrusive. Consent to video may be di�cult to obtain
and even when it is obtained people’s awareness of being videoed
can a�ect the naturalness of their behavior. Optical motion capture
markers in particular are cumbersome, visually intrusive, require
special clothing di�erent to the clothing materials we naturally
engage with, and reinforce the potentially distorting e�ects of being
in a laboratory.

Second, while camera based techniques can capture changes in
overall body con�guration they do not sense the shifting weights
and forces that movements induce. These are potentially interesting
cues in their own right. The extent to which they are perceived by
human observers or are, in principle, capable of being captured by
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camera are also interesting questions. Even though depth-camera
systems like Kinect can detect some shifts in pressure as well, they
are limited in sensing postures that are easily occluded by the body
and furniture.

Previous work has shown that the basic forces created by posture
shifts can be detected by pressure sensors embedded in chair seat
covers [25, 34]. For example, we established that pressure changes
in the seat of the chair alone can provide enough information to
distinguish between who is speaking and who is listening and also
to detect moments of laughter [34]. Even though this work suggests
that the changes of pressure on the surface of a seat are su�cient to
identify di�erent conversational states, the sensors were relatively
coarse grained and intrinsically limited by the fact that seat chair
covers are in contact with only a relatively small proportion of the
body. Behaviors such as resting the hands in our laps or between
the knees are di�cult to detect in this way. Rather obviously, they
also only work when someone is actually in contact with the chair.

In this work, we look at such postures of the lower body and the
positions of hands on upper legs from the perspective of legs them-
selves. The basic question of concern here is whether we can reliably
detect di�erent seated postures by detecting pressure changes on
the surface of a pair of trousers. To do this we have developed an un-
obtrusive on-body textile motion capture system that uses a matrix
of fabric pressure sensors around the thighs and buttocks. These
trousers allow for a more �ne grained tracking of pressure changes
and, compared to chair covers, have the potential to capture hand
and elbow contact as well as more distinct movement involving the
thighs.

The postures we select for testing derive from detailed video-
based observations of naturalistic seated multi-party interactions.
Here, we collect a data set of posed postures collected in a controlled
environment to benchmark the sensing capabilities using automatic
classi�cation techniques.

2 RELATEDWORK
2.1 Textile Sensors
We have learned about the meaning of colour in textiles, have used
various shapes, lengths, �ts of clothes to encode and represent
social, cultural and political statements through history. We can
quite consciously depict our mood, profession, personal preferences
with what we wear and how. We talk "through" our clothes, if
we want or not. Recent developments in the textile industry and
academic research have also shown that we are becoming able to
talk "with" our clothes, for example turning them into interfaces
for digital devices or use them as types of remote controls.

When deploying sensors on the body, there are restrictions as
well as opportunities that come with it. More bendable, soft and
in general more �exible materials comfort the sensing capacities
for the body. Instead of using gadget like hard materials such as
plastic that encapsulates electronic components in belts, wristbands
or other accessories, fabrics have been explored as an appropriate
sensing material for such purposes. This has been demonstrated
in numerous works, whether this is on table cloths [12] or denim
jackets [29]. But also other alternative sensing materials are being
investigated to decrease intrusiveness. Everyday objects like door-
knobs [32] or ceiling lights [22] can also serve as sensor networks

to capture posture and gesture and help to create ubiquitous and
ambient "smart" environments. In some cases, even the skin itself
has been used as a sensing surface [40].

The idea to integrate electronics in fabrics, however, is not novel
as such and has a decades long tradition. Especially through the
body of work produced by Perner-Wilson, Satomi et al [27, 28], the
�eld of smart electronic textiles, or e-textiles, has been fast growing.

Electronic textiles are conductive fabrics or yarns that, when con-
nected to a micro controller, are turned into sensors and actuators.
Such materials can be used as various sensor types (see e.g. [41]).
The most common types that are used in the �eld of e-textiles are
radio frequency identi�cation (RFID), e.g. in [37], piezo-resistive
(e.g. measuring stretch and pressure) and capacitive (e.g. measuring
proximity) sensors. Most recently, a combination of the latter two
has been introduced [35], which expands on the measurements that
we can collect from e-textiles.

In our work, we focus on the use of piezo-resistive textile pres-
sure sensors. Moreover, we are building on the work of Donneaud
et al. [8, 9], who have designed a matrix of pressure sensors using
conductive fabrics alone. A grid of multiple pressure points allows
a more �ne grained sensing compared to previously used larger
sensing surfaces, that make it more di�cult to determine the pre-
cise location of touch or pressure. The continuous tracking of the
changes of pressure not only captures the intensity of touch, but
also the movement across the surface of the matrix.

2.2 Sensing Trousers
With new technologies enabling to embed electronic components
in textiles in less obtrusive ways, everyday pieces of clothing and
accessories can be turned into smart and interactive products.

Exploring how soft circuits and electronics can be embedded in
such products, most examples demonstrate designs and use cases
for upper body garments. Only few have focused on the potential
of trousers. This can be explained with the upper body being con-
sidered to contain more information about body movement and its
social implications, e.g. through gestures that are captured with
tilt sensors and accelerometers, or heart rate being measured with
sensors around the chest. Tracking acceleration of hand movement
or heart rate have become common measures for various on-body
sensing applications in recent years.

There are, however, some works that have discovered trousers
as an equally informative interface for sensors. For example, Dunne
et al. [10] used motion capture markers on trousers to track leg
movement, as well as conductive thread stitched on trouser fabric
to detect joint movement and bending [13]. Shafti et al. measured
muscle activity with ECG sensors in running trousers [30] with
embroidered conductive threads. Also in other attempts, textile
sensors have been deployed on trousers - for example patches on
front thighs to recognize touch and envision new input formats
for computer interaction [17]. What else trousers can be used for
in the context of smart, interactive clothing is discussed by van
Laerhoven et al [38], who ask what trousers should and could be
taught by humans.



2.3 Non-Verbal Behaviors
Postural states and shifts are important cues for social behaviors in
social encounters. It starts with the spatial formation of participants
that can reveal the level of intimacy and relationship between them
[20]. Especially when there are more than two participants, these
so called F-formations can take complex arrangements, describing
the space between members of the interaction, and also give impli-
cations as to who has what rights to speak and who can contribute
in what way to the conversation. For example, the interpersonal
distance reveals how intimate (or not) the relationship between in-
dividuals is [39]; and the orientation of the participants’ bodies can
give indications about who enters or leaves such a conversational
formation [20].

When looking at bodily constructs of individual participants,
similar cues can be retrieved from gaze, gestures, body torques
or �dgeting [5, 15, 33, 42]. For example, nodding can signal who
is being addressed, and the direction of the torso can embody to
which degree someone participates in a conversation or is involved
in side activities [33].

Again, most observations are directed towards activities on the
upper body, focusing on gestures and facial expressions, through
which, for example, knowledgeability can be predicted automati-
cally [2]. Nevertheless, some behavioral cues have been retrieved
from leg movement as well. When speakers draw legs back and
lean forward, they indicate interest and attention, while stretched
out legs are observed more in boredom [4]. Mehrabian and Knapp
also point out the "honest" information signals postures comprise
because of their unconscious nature [21, 23]. This, so it is argued,
occurs more in leg movement than in the torso [21]. But also very
conscious social cues happen through legs, such as revealing a
thigh, or sitting with open closed legs to indicate "openness" for
interaction [23].

Also in screen based interactions, the lower body reveals a great
deal about engagement and a�ect. It has been found, for example,
that �dgeting and thigh movement [5, 42] play a signi�cant role
in detecting attention levels, and also that tracking feet movement
alone has proven to be a good indicator for detecting overt postures
as well as movements referring to gestures and nodding [6]. It goes
that far as to identify people through tracking their movement on
a seat [31].

Many of these behaviors can and have been measured with
pressure sensors. D’Mello et al., for example, found that frequent
changes in pressure refer to boredom and restlessness of learners
[7]. Together with pressure, other modalities have been explored
and combined with information of postural shifts, such as facial
cues [11].

2.4 Classifying Cues
Many of these measurements are taken from Human-Computer-
Interaction (HCI) scenarios, such as investigating user behavior for
screen based tasks. Also when measuring a�ect, it is often done in
single user interactions with a device. The advantage of measuring
behaviors of a human working with a computer is of course the
variety of sensing methods. A computer can monitor eye move-
ment, track actions like mouse clicks, or record audio and video
data. These more or less conventional sensing technologies are still

amongst the most common. When evaluating interaction between
humans, more recently, other multimodal systems have been intro-
duced to develop classi�cation models based on non verbal cues
(and their co-occurrence), e.g. in [26]. Such a network of sensors
relies on both visual and physiological measures and features both,
o�- and on-body sensing. It is often stated that this combination of
di�erent sensors is required to achieve a high accuracy for classi�-
cation models. There are works, however, that suggest that even
one simple sensor type has the capacity of picking up rich cues of
conversational behavior.

Especially when focusing on capturing sitting postures in that
regard, it has been shown that pressure sensors on chairs have the
potential of replacing more complex data collection, like from ac-
celerometers, IMU sensors (Intertial Measurement Units) or motion
capture markers (see for example [1, 6, 25, 34, 36]). For example,
Tan et al. achieved a 96% accuracy with 20 participants when test-
ing pressure maps created from 64 pressure sensors [36], similar
results with only 5% error were modeled by Meyer et al. [24]. Also
Cheng et al. reported about an accuracy of 0.88 with sample data
with 4 subjects [6]. Less accurate classi�cation is reported in [31],
although in this work, the highest resolution of pressure sensors
was used. This again implies that not the amount of sensors used
is key for better posture detection, but other measures come into
play just as much.

It is also worth noticing that, when using more simple methods
like pressuremeasurements, the sensors are almost always deployed
on the chair, and are never integrated in clothing. Moreover, these
sensors are notmade of fabrics or other ubiquitousmaterials that we
would �nd on a chair, but often out of plastic and hard components.

We are introducing an unobtrusive on-body sensing system, hav-
ing designed costumized trousers that capture postural movement
around the thigh and the buttocks using fully embedded fabric
pressure sensors.

3 TROUSER DESIGN
Conductive textile materials like yarns can be turned into smooth
textile surfaces and sensors which can be embedded in everyday
objects and surfaces we come in touch with. This has been shown in
projects turning chair covers [36], table cloths [12] or �oor carpets
[6] into smart objects.

Deploying fabric sensors in garments has the bene�t of having an
unobtrusive, non-distracting and therefore less distorting sensing
interface that is also comfortable to wear and doesn’t modify our
common surroundings. These properties have led us to focus on
textile sensors in clothing, and the choice of materials as well as the
pattern cutting design was guided by this approach on ubiquitous
technology.

3.1 Materials
Our trousers consist of three di�erent types of material: non con-
ductive base fabric that would be the material in direct contact
with the wearers’ skin; conductive fabrics that are concealed on
the inside of the trousers and are turned into sensors; and the elec-
tronic components that collect the data. All conductive material
was integrated into the trousers so that it wouldn’t come in direct
contact with the skin when being worn.



Figure 2: Left: pattern of one trouser leg, the back (but-
tocks) on the left with the more de�ned curve, and the front
(crotch) with the steeper curve on the right. The sensor ma-
trix ends around the knee (light blue fabric). Right: �nished
trousers turned inside out, before wires are inserted in tube
panel on inside legs.

3.1.1 Conductive fabrics. As described in numerous other tex-
tile sensor works, piezo-resistive pressure sensors usually consist
of 3 layers: 2 conductive layers, and a resistive layer in between,
preventing the two layers to touch directly and short the circuit.
This resistive layer is also conductive, but with a much lower con-
ductance than the other layers. For this resistive layer, we used
EeonTex stretch jersey from Eeonyx1, which has a resistance of
10-20 kilo ohm per square. The more conductive layers are a single
jersey ’zebra’ fabric, purchased from Hitek2, made of conductive
nylon yarn and textured polyester (for the non conductive parts).
All fabrics used to make this sensor matrix can be commercially
purchased per meter.

3.1.2 Non-conductive fabrics. The outer layer of the trousers
consists of viscose-cotton single jersey knit in a �ne gauge (see
black fabric in Figure 2), and the pattern parts on the inside of the
trousers, like lining fabric, covering the thighs and buttocks up
from the knees, are made of a cotton elastane mix single jersey knit
(light blue fabric in Figure 2) that conceals all conductive layers.

This layering of non conductive and conductive fabrics make
the trousers thicker on some parts: around the thighs and buttocks.
However, since all fabrics are light weight and single jersey knits,
participants and prior �tting models reported the trousers to be
comfortable and only a bit ’warmer’ around the upper legs.

3.1.3 Electronic components. All materials that are not fabric
are placed on a solid circuit board that houses a micro controller,
a Teensy 3.2, a battery and a datalogger with a micro SD card on
which the data was stored. The individual rows and columns of
the matrix were linked to the input pins of the micro controller
through thin and �exible insulated wires, embroidered to the fabric
and soldered to the circuit board.

1https://eeonyx.com
2https://www.hitek-ltd.co.uk

Figure 3: Top: arrangement of rows and columns of the sen-
sor matrix. Bottom: layers of the matrix: conductive nylon
stripes as rows and columns on outer layers, stitched onto
non conductive jersey (light blue), resistive EeonTex stretch
jersey (gray) in between

3.2 Sensor Design
The sensing area around the thighs and buttocks of the trousers
consists of a 10x10 grid, which is made of cut up stripes of the
zebra fabric described above and is designed in the shape of trouser
patterns. The width of the conductive stripes is 1cm, so that all
100 pressure points are the same size of 1x1cm. The arrangement
of the grid is not symmetric or distributed equally, but designed
to be more dense (or �ne grained) on the areas where hand touch
occurred as more likely, and less dense, for example, along the side
of the thigh and the buttocks, which is displayed in Figure 3.

While the schematic of the sensor matrix as well as of the circuit
board (PCB) follows the work of Donneaud et al. 3, the size, PCB
design and data processing was altered and modi�ed to our use
case.

Each leg has its own sensor matrix, micro controller and circuit
board, so each leg collects data independently from the other. This
has practical reasons, such as the limited number of input possibili-
ties on the micro controller or the design of the cabling integration
not interfering with wearability comfort, but also reduces the risk of
error, when one leg fails to collect data, the other one still functions
without interruption. A drawback of this, however, is certainly the
increased cost with two micro controllers per pair of trousers.

3.3 Pattern Construction
Trying to accommodate di�erent clothing sizes and body shapes,
three di�erent trouser patterns were developed, having constructed
a grading system that draws from sample data of 11 di�erent sub-
jects (7 male and 4 female). Using an elastic fabric is the easiest
way to make a garment �t multiple sizes, as well as making the
garment loose. In our case, the aim was to have a pair of trousers
that sits close to the body, enabling more precise data collection
and posture tracking. We decided to make leggings because they
are both, elastic and tight, and are a piece of clothing that most

3https://matrix.etextile.org



Figure 4: sensor visualization of the participant’s left leg for
two di�erent leg crossing postures. top: right leg over left,
bottom: left leg over right. Aligned with annotation soft-
ware Elan [3]

people are familiar with and use. Di�erences in body shape also
entail that the sensor points of the matrix are not always in the
very same position, regardless the range of sizes. With the choice
of material and pattern, however, we minimize this variation.

Informed by our observations of lower body movement, we
de�ned the sensing areas around thighs, knees and buttocks and
have developed a design for the sensor matrix that covers most of
the front, side and back leg. Accounting for this, side seams were
eliminated in pattern cutting, and instead, a tube fabric panel was
inserted on the inner leg. This panel was double layered to serve as
a tube like seam4 to encapsulate thin wires that were embroidered
onto the fabric rows and columns of the sensor matrix and were
stitched down along the inner leg to the bottom hem, where each
wire would be connected to the micro controller (see gray wires on
the left in Figure 2). The circuit board was cut as small as possible to
be stitched onto the hem of the trousers. A battery could be tucked
into the hem, too.

4 STUDY DESIGN
To assess the reliability and overall performance of our sensing
trousers, a user study was conducted5. We tested 19 di�erent pos-
tures that were identi�ed through ethnographic observations, draw-
ing from a video corpus of 12 seated three-way conversations (36
di�erent subjects).

The design for this experiment follows settings of similar user
studies, in particular orientating towards the work of Meyer et al.
[24], who identi�ed 16 similar postures and tested these with 9
4similar to what is called "french seam" in tailoring vocabulary
5Ethics Approval Reference: QMREC2133a

subjects in three rounds for classi�cation purposes. Other works
evaluated gesture classi�cation with even fewer subjects (e.g. [6,
19]), or tracked leg movement with one tailor mannequin [10].
Examples like this show that even with collecting posture data of
only one person [36], but having multiple recordings per posture,
results are accurate enough for classi�cation models.

4.1 Participants
The data was collected from initially 10 participants, aged between
19 (2) and 42 (1) (the rest between 26 and 36years). 5 female and 5
male subjects were recruited, and di�erent clothes sizes were taken
into account to test all 3 sizes of trousers that were manufactured,
but also to compare the data sets of postures across di�erent body
sizes and shapes. Later we had to discard the data of 4 participants
due to an error with sensors and the data �les.

4.2 Procedure
The study consisted of single user actions. Participants were asked
to perform sitting postures and gestures, following verbal instruc-
tions. The 19 posture types are:

(1) standing up (hands to the side, natural standing position)
(2) sitting down, up straight = "home position" (�rst "natural"

position taken when sitting down, without hands, knees or
lower feet touching)

(3) sitting straight with knees touching
(4) leaning back
(5) leaning forward (without hands touching thighs or knees)
(6) slouching
(7) leg crossing: left on right leg (e.g. Figure 4 bottom)
(8) right on left leg (Figure 4 top)
(9) leg crossing: left on right leg with ankle touching knee
(10) right on left leg with ankle touching knee
(11) sitting up straight, hands touching knees
(12) leaning forward with hands on knees
(13) hands in crotch, see e.g. Figure 5
(14) hands between thighs, knees touching (thighs pressing on

hands, hands touching each other)
(15) hands on mid thighs
(16) elbow on thighs, leaning forward
(17) lower feet postures: both lower feet stretched out
(18) lower feet bent in
(19) lower feet crossed.

While the di�erent order of crossing legs was accounted for in
separate postures for the thighs, the last posture, crossing lower
legs, was not separated into two instructions and we didn’t distin-
guish as to which lower leg crossed which (since there were not
sensors covering the lower legs and we overall focus on upper leg
movement).

Each posture was held for 5 seconds and returning to the "home
position" for 2-3seconds in between. The instantaneous pressure
readings from the 200 sensor points for the duration of one posture
are de�ned as an instance (this accounts for 4 instances per second).
Each participant repeated this sequence of instances three times
(approximately 60 instances per participant per posture).



Figure 5: the same posture "hands in crotch" executed by
four di�erent participants

4.3 Data Collection and Pre-Processing
The raw sensor data was collected following the principle of Don-
neaud et al. [8, 9], the rows forming the digital inputs and the
columns the analog inputs on the corresponding microcontroller, a
Teensy 3.2. Pulling the digital pins high and reading analog input
values from the column creates a sensor reading for all data points
across the matrix - each sensor being stored in a separate column,
and each row accounting for the readings over time. A time stamp
was included for later synchronization between the legs as well as
with the video recording. A detailed documentation of this method
can be found in [8, 9].

Alongside the sensor data, a video recording documents the
session capturing the verbal instructions and posture of the par-
ticipant. Unlike in [8, 9], we do not process and visualize the data
immediately in real-time, but store it on a micro SD card for o�-line
analysis. After the completion of the postures by each participant,
the data is normalized so that the maximum sensor value is 1.0.
The data can then be visualized and mapped to the corresponding
location on the sensor grid using the open source software platform
Processing6.

The mapping of the data visualization and sensor numeration is
arranged as shown in Figure 6, where the �rst sensor sits on the
front inside leg and the last sensor on the top of the back pattern.
A screenshot of the animation can be found in Figure 4, showing
each data point as a circle increasing in size when the pressure on
the sensor increases (e.g. bigger circles on the top end mean more
pressure on the buttocks, which would indicate a sitting position).
Note that one grid depicts the data of one leg only, so it is not
representative for the whole pair of trousers.

4.3.1 Data Annotation. To generate a ground-truth data set of
the 19 di�erent postures, annotations for each of postures were
added to the video recordings using the software package Elan
[3]. All postures were hand coded as static positions, discarding
any transition periods between them. For example, the movement
between crossing a leg and returning to the home position was not
included in the posture, but treated as noise and removed.

The sensor data was then time-aligned with the video annota-
tions and exported into ARFF format. While we collected the raw
sensor data in the study, the normalized pressure readings used as
the input for our training model.

5 RESULTS
The aim for the trouser sensing system is for it to automatically rec-
ognize the posture of the wearer. The �rst steps towards achieving

6https://processing.org

Figure 6: Mapping of the sensor numeration across the ma-
trix on the leg: sensor 1 on front inner leg on knee, sensor
100 on back inner leg on buttocks, 10 sensors per rows.

this is to generate ground-truth data to train a machine learning
model performing a classi�cation task in order to provide a baseline
indication of the system’s performance.

The 200 sensor data points were captured at 4 Hz resulting in over
9000 total postural instances across six participants. Of these 1327
were instances of the standing posture with 325 to 626 instances
of each of the remaining seated postures. The higher number of
standing postures is due to longer standing periods in between the
cycles of posturing, which were also taken into account for analysis.
Instances where the participant was not clearly displaying one of
the postures were discarded from the data set.

5.1 Posture Classi�cation
Weka [14, 18] was used to train and evaluate a Random Forest
model with bagging with 100 iterations. It was �rst evaluated with
individual participants, then as a population-level model with all
participants, and �nally with individual participants withheld from
training.

5.1.1 Individual models. When training a Random Forest model
and evaluating using 10 fold cross validation with strati�ed data
on a single participant, it showed excellent results in classifying
postures with an average of 99.31% of postures classi�ed correctly.
The percentage correct classi�cations for each participant can be
seen in Table 1. The models showed particularly good performance
when classifying between standing and seated postures, with only
misclassifying one posture for two participants as seated with knees
touching or the home position instead of standing (participants
C and D). The success in the classi�cation between seated and
standing is likely because of the signi�cant di�erence in sensor
values on the underside of the trousers, however the data captured



Participant Individual Withheld
A 99.75% 64.26%
B 99.58% 42.71%
C 99.68% 27.93%
D 99.21% 10.97%
E 98.80% 32.20%
F 98.84% 50.10%

Table 1: Percentage of correct classi�cations for each partic-
ipant when trained on a single participants and evaluated
using cross-validation, and when that participant was with-
held from the training set then used as the test set. Partici-
pants C and D in bold are the two participants who misclas-
si�ed standing postures.

may also play a role. For each participant there was up to four times
as many instances of standing than any other posture in the data
set due to the sequence of positions recorded.

When examining the F-measures, four of the six participants
had the best classi�cation performance with standing and worst
with the feet crossing and hand-dependent postures such as the
ones shown in Figure 5. For the two participants with misclassi�ed
standing postures, their leg crossing postures performed better than
other postures.

5.1.2 Population models. The next step was the examine the
potential of building a generic, population-level model. We started
by training a Random Forest model on the aggregate collection of
postures from all six participants and then evaluating it using 10
fold cross validation with strati�ed data. This had excellent results
with 99.18% of postures classi�ed correctly.

Similar patterns occurred as when building individual models
for each participant. Again, standing performed well when com-
pared to non-standing positions, though it still has up to 4 times
as many posture instances than other postures. It had one more
misclassi�cation when compared to the individual models – along
with being confused by knees touching and the home position, it
misclassi�ed a slouching posture.

The ideal trouser sensing systemwould be able to train from data
sets of lab-based postures, and then correctly classify the postures
of a newwearer who had not previously gone through an individual
training phase. To evaluate the feasibility of this application, we
generated six Random Forest models withholding a single partic-
ipant from the set, and then tested that model with the withheld
participant data. As was expected, all participants performed much
worse than when their data was included in the training set, but all
performed better than random chance.

The two participants that performed the worst were the same
that performed the worst at classifying between standing and seated
postures. Those whose individual models could better distinguish
between standing and non-standing also performed better when
their data was not included in the training data with the best per-
formance being 64.26% from participant A. The classi�cations from
the model built without participant A can be seen in the confusion
matrix in Figure 7. The matrix also compares which postures were
confused with which other postures. For example, "hands between

Figure 7: ConfusionMatrix, participantAwithheld. Number
of instances are colour coded as shown on side bar (0-202
instances, white to dark blue).

thighs", "hands in crotch" and "hands on thighs" were often misclas-
si�ed as "hands on knees". This can be explained with the similarity
of the postures as well as the variations of hand positioning per
participant and posture repetition. Other postures that were con-
fused with each other are "leaning back" and "home position", both
only performing movement of the upper body. More, less common
misclassi�cations can be deducted from Figure 7.

These four participant tests were able to recognize standing
better than any other posture. This indicates that may be a potential
application in recognizing the postures of a wearer who has not
gone through a training phase, but much more data needs to be
collected to better inform the machine learning model.

6 DISCUSSION
Given the small number of sample data, there is much room for
improvement for this classi�cation model. And yet, the implications
for use cases that emerge from the results of these sensing trousers
are promising.

The machine learning model shows good performance when
building a general population-level model, as long as the partici-
pant being tested is represented in the training of that model. It
has signi�cantly worse performance when testing a model with
a participant who is not represented within the training set. This
indicates that the sensors could be e�ectively used to automatically
identify postures as well as individuals, if that participant goes
through a data collection phase. Without more data and model
re�nement, this is not yet ready for generic use where an unknown
participant could have their postures detected without training.
Another aspect of our study set up that may a�ect the results is
the controlled data collection with static postures in a repeating



order. The trousers were worn once by each participant and have
not been tested with variations in order and duration of postures,
or for consistency in multiple wearing sessions, which could lead
to minimal changes in sensor positions. In social interaction, dy-
namic postures are more common, and occur in di�erent order and
with di�erent transitional movements. We have accounted for the
potential noise in the data regarding repetition and order e�ects,
and we plan to dedicate future work to investigate these points
further by testing our trouser design in conversational scenarios.

Our evaluation has shown that there may be a much richer col-
lection of postural cues yet to explore that has so far been invisible
to more conventional sensing technologies. If thighs and buttocks
can provide such details about behavioral cues with their shifts in
movement and touch interactions, there are potentially additional
and complimentary cues to be collected from lower legs, feet move-
ment or other areas of the lower body that haven’t been explored in
detail and that go beyond gesturing and apparent twists in posture.

Translating the classi�ed postural movements to a�ective states
and a measure for conversational engagement, trousers have the
potential of identifying a "smart arse", or could detect if someone
is listening, interested, bored or restless. For example, future work
is directed towards speci�c questions as to whether leg crossing
correlates with gaze and determining addressees; whether the po-
sition of hands on legs bears information about levels of arousal
and valence to detect stress, comfort, anxiety, etc.; or elaborate
further on �ndings of existing work [42] that suggest that thigh
movement implies user attention level. This also leads to questions
that expand on the sensing capacities of this sensor design. Having
trousers that can not only capture leg movement, but that also pick
up touch of the hands, it is intriguing to explore how well, or if at
all, trousers can also pick up upper body movement, like nodding,
head turns or conversational states like speaking and listening;
and, if not, how an equivalent design would look like for garments
for the upper body. The contribution this body of work can make
towards a�ect detection and understanding di�erent modalities of
human communication could bene�t applications in the medical
sector for the design of therapies, like physiological rehabilitation,
as well as cognitive therapies. Furthermore, such trousers could
be designed to feed back this information to participators of so-
cial encounters and thereby help to improve human interaction
scenarios. Such "socially aware trousers" are not only potentially
enriching for interaction between humans, but also for applications
in Human-Computer-Interaction - even if that is only by replacing
rigid interfaces with soft, �exible textile sensing surfaces that can
be worn unobtrusively on the body.

Our sensing trousers explore the possibilities of textile pres-
sure sensing to detect touch and postural states. Using the same
materials and data processing techniques, however, other sensing
modalities like stretch can be captured, too (for measuring the
bending of a limb, for example). But even beyond piezo-resistive
sensing, reaching towards hybrid sensing methods like Strohmeier
et al. have introduced [35], di�erent types of touch can be identi�ed
with "smart" fabrics that feel like everyday clothing items. Textiles,
electronically enhanced or not, are a material we already engage
with traditionally, and clothes are something omnipresent. This is
their foremost advantage compared to other modalities with similar
sensing capacities, for example Kinect v2, which may be able to

sense muscular force, but is vision dependent and requires special
spatial settings to take bodily measures.

The ability to monitor postural shifts and pressure applications
has also the potential to inform garment construction and pattern
cutting in direct dependency with the intended use case. This could
range from applications for fashion retail, e.g. clothes that take size
measurements7, to the simple objective to develop more comfort-
able trousers for professions that require a lot of sitting (e.g. in
o�ces). Other smart clothes can be made to identify their wearer
with application scenarios in health and safety, and could also be a
gateway for an even less intrusive, embedded contactless payment
option. Such implications to the design of trousers would give the
saying "you are what you wear" yet another notion and would make
our clothing not only subject of personal expression, but also of
identi�cation and a more active part of our everyday actions. In the
future, clothes may not only be objects that project communication,
but potentially be aware of how we communicate with others.

7 CONCLUSION
In this paper, we have presented a new unobtrusive method of
capturing di�erent sitting postures that is integrated in stretch
trousers. Using a textile pressure matrix around the thighs and
buttocks, it is possible to detect di�erent leg movements as well as
gestures on the lower body. We demonstrate that shifts in pressure
on the upper leg are enough to train machine learning models to
identify leg crossing, positions of hands on thighs and knees, lower
leg postures, as well as more subtle weight shifts with high accuracy,
that are usually di�cult to be picked up by other motion capture
systems relying on visible cues. Automatic classi�cation models
were tested to distinguish between 19 posture types, and have
shown promising results towards an objective to make garments
"socially aware".

Our work introduces textile sensing as a new ubiquitous method
to detect social behavior and analyze conversation. By exploring
fabrics as an interface so close to our body, we anticipate that we
will be able to identify additional postures as important cues in
social interaction.
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